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Apple juice (13 �Brix) spiked with methamidophos and chlorpyrifos (2–3 mg/l of each compound) was
treated by pulsed electric fields (PEF), and pesticide residues were quantified by gas chromatography
with flame photometric detection (GC-FPD). Results showed that electric field strength (8–20 kV/cm)
and pulse number (6–26 pulses) have significant effects on the degradation of methamidophos and chlor-
pyrifos. PEF treatment is effective for the degradation of methamidophos and chlorpyrifos residues in
apple juice, and chlorpyrifos is much more labile to PEF than methamidophos. An increase in either pulse
number or electric field strength could speed the degradation of methamidophos and chlorpyrifos, and
the kinetics equations and related parameters quantitatively characterized the degradation behavior of
the pesticides. The exponential model better fits the experimental data for all treatments than the linear
model.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Organophosphorus pesticides (OPPs) are one of the most impor-
tant and widely used classes of agricultural pesticides, accounting
for about 70% of the insecticides in current use in China. This wide-
spread use poses a potential risk to human health because OPPs in-
hibit acetylcholinesterase and lead to the modification of
cholinergic signaling (Pope, Karanth, & Liu, 2005). In addition, OPPs
have been known to be cytotoxic (Giordano et al., 2007; Wagner,
McMillan, & Plewa, 2005), genotoxic (Cakir & Sarikaya, 2005; Rah-
man, Mahboob, Danadevi, Saleha, & Grover, 2002), reproductively
toxic (Kang et al., 2004) and immunotoxic (Crittenden, Carr, & Pru-
ett, 1998; Yeh, Sung, Chang, Cheng, & Kuo, 2005). Therefore, there
is a growing interest in dissipation of OPP residues in agricultural
products and foods all over the world.

Concentrated apple juice (CAJ) has become an economically
important food product in China, where export of CAJ accounts
for nearly 50% of the world export volume. However, the applica-
tion of OPPs has resulted in pesticide residues in fruit and deterio-
ration of CAJ quality. Several methods have been demonstrated to
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be effective in the removal of pesticide residues, such as post-har-
vest storage (Athanasopoulos & Pappas, 2000; Pappas, Kyriakidis, &
Athanasopoulos, 2003), ozone washes, and resin adsorption during
processing (Karaca & Velioglu, 2007; Ong, Cash, Zabik, Siddiq, &
Jones, 1996). Unfortunately, these methods can reduce nutritional
and flavor qualities of the juice (Dan & Seth, 1990; Nijssen, 1991)
and in the case of ozonation, may also produce by-products with
higher toxicity than the original organophosphorus pesticides
themselves (Hwang, Cash, & Zabik, 2002; Ikehata & El-Din, 2005).
Thus, it seems to be necessary to develop innovative processing
methods to decrease pesticide residues without undesirable ef-
fects. Pulsed electric field (PEF) is a novel non-thermal technology,
causing few losses of flavor, color, taste or nutrients (Ayhan, Yeom,
Zhang, & Min, 2001; Cortes, Esteve, & Frigola, 2008) compared to
conventional thermal processing. PEF technology can inactivate
microorganisms (Mosqueda-Melgar, Raybaudi-Massilia, & Martin-
Belloso, 2007; Zhong et al., 2005;) and enzymes (Aguilo-Aguayo,
Odriozola-Serrano, Quintao-Teixeira, & Martin-Belloso, 2008; Mar-
sells-Fontanet & Martin-Belloso, 2007). This raises an interesting
question of whether or not pesticide residues in apple juice can
be dissipated by PEF treatment. This application of PEF, to the best
of our knowledge, has not been reported. Methamidophos (O,S-di-
methyl phosphoramidothioate) and chlorpyrifos [O,O-diethyl-O-
(3,5,6-trichloro-2-pyridinyl) phosphorothionate] were used as
representative examples in present study, because they are active
ingredients in most organophosphorus formulations. The aim of
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this paper is to investigate whether both methamidophos and
chlorpyrifos in apple juice can be degraded by PEF.

2. Materials and methods

2.1. Materials

Methamidophos (>95% pure) and chlorpyrifos (98.5% pure)
were purchased from the China Agricultural Environment Protec-
tion and Inspection Center (Tianjin, China). All solvents were ana-
lytical grade and obtained from Beijing Beihua Fine Chemicals Co.
(Beijing, China). Acetone and acetonitrile were redistilled before
use. Concentrated apple juice (CAJ) at 78 �Brix was manufactured
by a local factory and diluted to 13 �Brix (similar to raw apple juice,
pH 3.86) for PEF treatment. The initial concentration of methami-
dophos was 0.004 ± 0.001 mg/l, but no residue of chlorpyrifos
was detected. Standard stock solutions (100.0 mg/l) of methamido-
phos and chlorpyrifos were prepared in acetone. The above stock
solutions were added to the reconstituted apple juice with final
pesticide concentrations of 2–3 mg/l followed by PEF treatment.

2.2. PEF Treatment of apple juice

PEF treatment was performed using a laboratory scale appara-
tus (jointly designed by Tsinghua University and China Agricultural
University, Beijing, China), which included a high voltage pulse
generator, a treatment chamber (volume (V) = 2 ml), and a peristal-
tic pump. A schematic diagram of the apparatus is shown in Fig. 1.
Two round parallel-plate electrodes with a 3.57 mm radius were
made of stainless steel, and the gap between electrodes was
5 mm. The PEF treatment parameters used were as follows: expo-
nentially-decaying wave, 1 Hz pulse frequency, 0.5 lF capacitor,
and 10 ms pulse width. A thermocouple was attached to the exit
of the chamber to monitor the post-treatment temperature. A
20 ml aliquot of apple juice was pumped through the treatment
chamber under a given combination of PEF conditions. Different
electric field strengths (8, 12, 16 and 20 kV/cm) and pulse numbers
(6, 9, 12, 19 and 26) were used as treatments. The pulse number
depends on the pulse frequency (f) and the flow rate (v, ml/s) of ap-
ple juice. The pulse number was calculated as V � f/v, and total
treatment time was calculated as the product of the pulse width
and the pulse number. The temperature of treated apple juice
was kept below 40 �C due to the short treatment time (60–
Fig. 1. Schematic diagram of the experimental PEF apparatus.
260 ls). Each treatment was conducted in triplicate. The treated
apple juice was stored at 4 �C and the pesticides were tested within
one day after treatment.

2.3. GC analysis of methamidophos and chlorpyrifos in apple juice

The extraction of pesticides was carried out according to a stan-
dard method established by the Ministry of Agriculture of China
(2004) with some modifications. An aliquot of apple juice
(20.0 ml) was mixed with 50.0 ml of acetonitrile in a conical flask
(100 ml). The mixture was shaken vigorously for 15 min and fil-
tered through Whatman No. 1 filter paper into a conical flask
(100 ml) containing 10.0 g NaCl. The sample was centrifuged at
2000 g for 5 min. A 10.0 ml portion of the upper acetonitrile layer
was carefully transferred to a glass test tube and evaporated to
dryness under a stream of nitrogen in a water bath at 40 �C. The
residue on the wall of glass tube was redissolved in 2.0 ml of ace-
tone and transferred to vials for GC analysis.

Methamidophos and chlorpyrifos were detected with GC-14A
(Shimadzu Corporation, Kyoto, Japan) equipped with a HP-5 fused
silica capillary column (30 m � 0.53 mm, 1.5 lm, Hewlett Packard,
Avondale, USA) and flame photometric detector (FPD). The injector
and detector temperatures were 250 �C and 260 �C, respec-
tively. The temperature program was as follows: 120 �C (1 min),
10 �C/min to 240 �C (7 min). Nitrogen carrier gas was used at the
flow rate of 59.0 ml/min. Sample solution (2.0 ll) was injected in
splitless mode, and the quantification of pesticide was performed
using an external standard.

2.4. Degradation kinetics

2.4.1. First order kinetics (linear model)
A general reaction rate expression for the degradation kinetics

of pesticides can be written as follows (Timme, Frehse, & Laska,
1986; Ambrus & Lantos, 2002):

Ct ¼ C0e�kt ð1Þ

where C0 and Ct are the concentration of pesticide before and after
treatment, t is the treatment time and k is the rate constant. Defin-
ing S = Ct/C0 (S is the persistent pesticide fraction) and combining
into Eq. (1) gives the function of lnS versus t as

ln S ¼ �kt ð2Þ

In order to directly reflect the effect of pulse number on the
degradation of pesticides, we used t = 10n in Eq. (2) and obtained
the following:

ln S ¼ �10kn ð3Þ

which was used for degradation kinetics of pesticides in this study.
In addition, the half-life (n1/2) of pesticide upon PEF treatment could
be calculated as

n1=2 ¼
ln 2
10k

ð4Þ

where n1/2 is the pulse number at which the concentration of pes-
ticide is one-half the original concentration.

2.4.2. Exponential model
Originally, an extension of the exponential model was proposed

by Hülsheger, Potel, and Niemann (1981) to describe the microbial
survival fraction (S) with PEF treatment time (t) by Eq. (1)

ln S ¼ �bt lnðt=tcÞ ð5Þ

where S is the survival rate of microbes (the ratio of living cell count
before and after PEF treatment), bt is the coefficient, t is treatment
time, and tc is the critical treatment time corresponding to the
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extrapolated value of t for 100% survival rate. In the present study,
assuming that the degradation of pesticides would be similar to the
inactivation of microbes during PEF treatment, Eq. (6) would be ob-
tained which would describe the relationship between persistent
pesticide fraction S0 and treatment time t as

ln S0 ¼ b0t lnðt=t0cÞ ð6Þ

where b0t is the regression coefficient and t0c is a critical treatment
time (the extrapolated value of t for 100% pesticides existence).
Similarly, we introduced the pulse number n into Eq. (6) and con-
verted it from logarithmic form to exponential form:

S0 ¼ 1
nc

� ��b0t

n�b0 ð7Þ

which was used for degradation kinetics of pesticides in this study.

2.5. Statistical analysis

Statistical analysis was performed by using Student’s t-test with
SPSS 15.0 software. Analysis of variance (ANOVA) was based on a
significance level of p = 0.05.

3. Results and discussion

3.1. Determinations of methamidophos and chlorpyrifos

Methamidophos and chlorpyrifos were identified from their
chromatogram and determined by comparison with authentic
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Fig. 2. GC chromatogram of methamidophos and chlorpyrifos. a: standard solution
methamidophos and chlorpyrifos is 2.20 mg/L and 2.50 mg/L, respectively); b: fortified
standards, the GC chromatograms of pesticides in standard solu-
tion and spiked apple juice were shown in Fig. 2. The satisfactory
correlation coefficients of calibration curves (over 0.98) and the
linear range (0.25–10 mg/l) for both pesticides were obtained. Lim-
its of detection (LOD) for methamidophos and chlorpyrifos were
0.005 mg/l and 0.002 mg/l, respectively. In addition, spiked recov-
eries ranged from 85% to 98% for methamidophos, and 89% to 104%
for chlorpyrifos at various concentration levels. These levels were
within the range of 60–140% for routine pesticide residue analyses
recommended by Putnam, Nelson, and Clark (2003). The reproduc-
ibility of the recovery results, as indicated by relative standard
deviations (RSDs), confirmed that the method is sufficiently reli-
able for the pesticide analysis in this study.
3.2. Effect of PEF treatment on the degradation of methamidophos and
chlorpyrifos

The changes in concentrations of methamidophos and chlorpyri-
fos during PEF treatment were shown in Fig. 3. PEF treatment was
effective in dissipating methamidophos and chlorpyrifos, and
electric field strength and pulse number were the both important
factors in the degradation of these compounds. The ANOVA results
indicated that electric field strength and pulse number had signifi-
cant effects on their degradation (p < 0.05), and there is a significant
interaction between electric field strength and pulse number
(p < 0.05). The increase of pulse number (6–26 pulses) could speed
the degradation of methamidophos and chlorpyrifos. Under PEF
treatment at 8 kV/cm for 26 pulses the persistent pesticide fraction
10 12 14 16 18

16.243

n Time(min)

10 12 14 16 18

n Time(min)

16.306

of methamidophos (Rt = 6.019) and chlorpyrifos (Rt = 16.243) (concentration of
apple juice, methamidophos (Rt = 6.009), chlorpyrifos (Rt = 16.306).
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Fig. 3. Concentration changes of pesticides in apple juice under different PEF
treatments. a: methamidophos; b: chlorpyrifos.
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Fig. 4. Degradation kinetics of pesticides fitted to the linear model. a: methami-
dophos; b: chlorpyrifos.

Table 1
Linear model for the degradation kinetics of methamidophos and chlorpyrifos

Field strength
(kV/cm)

Regression
equation

(R2) p value k (ms�1) n1/2

Methamidophos
8 lnS = �0.009n (0.99) 0.000 0.9 � 10�2 77.9
12 lnS = �0.014n (0.94) 0.001 1.4 � 10�2 49.5
16 lnS = �0.015n (0.84) 0.022 1.5 � 10�2 46.2
20 lnS = �0.017n (0.77) 0.061 1.7 � 10�2 40.8

Chlorpyrifos
8 lnS = �0.044n (0.93) 0.001 4.4 � 10�2 15.6
12 lnS = �0.053n (0.90) 0.000 5.3 � 10�2 13.1
16 lnS = �0.062n (0.80) 0.001 6.2 � 10�2 11.3
20 lnS = �0.071n (0.79) 0.001 7.1 � 10�2 9.8
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of methamidophos and chlorpyrifos were 27.7% and 70.3% lower
than that at 8 kV/cm for 6 pulses, respectively. Similarly, the degra-
dation of both pesticides was accelerated with an increase of electric
field strength. The persistent pesticide fraction of methamidophos
and chlorpyrifos under treatment at 8 kV/cm for 26 pulses were
9.1% and 9.0% higher than that treated at 20 kV/cm for 26 pulses,
respectively. It could be explained that a pulsed electric field stem-
ming from the application of higher voltage increases the vibration
and rotation of polar molecules, subsequently facilitating the degra-
dation of pesticides. Furthermore, the degradation behavior of
methamidophos and chlorpyrifos appeared to differ (Fig. 3). The
concentration of methamidophos decreased slowly as the pulse
number increased. In contrast, the concentration of chlorpyrifos
did not show a significant decrease when less than 6 pulses was ap-
plied, but a sharp decline occurred from 6 pulses, and then the deg-
radation rate declined. However, the trends were similar for each
pesticide in different field strengths. Therefore, it is necessary to
determine the degradation kinetic equations and parameters based
on experimental data, in order to describe degradation behaviors of
methamidophos and chlorpyrifos in apple juice treated by PEF.

3.3. Degradation kinetics of methamidophos and chlorpyrifos

The first order kinetics equation (linear model) was fitted with
changes in concentrations of methamidophos and chlorpyrifos with
pulse number, and their plots are shown in Fig. 4. Degradation equa-
tions and deduced parameters for different treatments are shown in
Table 1. All regression coefficients (R2) are greater than 0.75, dem-
onstrating that the degradation of pesticides could follow the gen-
eral degradation pathway of OPPs such as hydrolysis and
oxidation (Pehkonen & Zhang, 2002). Furthermore, the values of
R2 varied with field strength, and were larger than 0.9 in treatments
at 8 kV and 12 kV, suggesting that degradation of pesticides in apple
juice treated at lower electric field strength followed the first order
kinetic model better than that at higher PEF strength. This might be
explained by the significant effect of the high field strength on the
degradation of pesticide, but the effect of PEF on pesticide degrada-
tion was not considered in the linear model. Actually, the degradation
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Fig. 5. Degradation kinetics of pesticides fitted to the exponential kinetic model. a:
methamidophos; b: chlorpyrifos.

Table 2
Exponential model for the degradation kinetics of methamidophos and chlorpyrifos

Field strength (kV/cm) Regression equation (R2) p value �bt nc

Methamidophos
8

S0 ¼ 1
4:8

� �0:13n0:13
(0.99) 0.000 0.13 4.8

12
S0 ¼ 1

2:8

� �0:14n0:14 (1.00) 0.000 0.14 2.8

16
S0 ¼ 1

1:2

� �0:10n0:10 (0.95) 0.005 0.10 1.2

20 S0 ¼ 1
0:6

� �0:09n0:09 (0.96) 0.003 0.09 0.6

Chlorpyrifos
8 S0 ¼ 1

5:7

� �0:72n0:72 (0.92) 0.008 0.72 5.7

12 S0 ¼ 1
5:2

� �0:88n0:88 (0.98) 0.002 0.88 5.2

16 S0 ¼ 1
4:6

� �0:99n0:99 (0.79) 0.018 0.99 4.6

20 S0 ¼ 1
5:0

� �1:2n1:2 (0.93) 0.007 1.20 5.0
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rate constant k was ascending, but value of n1/2 was descending as
the field strength was increased. These results further confirm the
significance of PEF parameters.

Similarly, the exponential model was fitted with the changes in
concentrations of methamidophos and chlorpyrifos with pulse
number, and the plots were shown in Fig. 5, which degradation ki-
netic equations and related parameters for both methamidophos
and chlorpyrifos were documented in Table 2. Results showed that
all values of R2 in methamidophos were larger than 0.95, and val-
ues of R2 in chlorpyrifos were larger than 0.90 except the treatment
at 16 kV/cm. In comparison to the linear model, the exponential
model better describes degradation kinetics of both pesticides, pre-
sumably because the role of PEF in the degradation of pesticides
was included in the exponential model (Hülsheger et al., 1981).
Simultaneously, values of �bt and nc in the exponential model
were used to characterize the degradation behavior of pesticides
during PEF treatment. On the one hand, values of nc of both pesti-
cides declined with increase of electric field strength (except the
treatment at 20 kV/cm for chlorpyrifos), indicating value of nc

could reflect the effect of PEF on the degradation of pesticides.
The value of nc of methamidophos was much lower than that of
chlorpyrifos for a given PEF treatment condition, which could be
a result of different degradation pathways of the pesticides. This
is in agreement with previous findings, where different dissipation
kinetics have been suggested for different pesticides (Branko, &
Matej, 2007; Badawy, Ghaly, & Gad-Allah, 2006). On the other
hand, the changes in values of �bt with the increase of electric field
strength were different for each pesticide. The value of �bt of
methamidophos dropped slightly, whereas the value of �bt of
chlorpyrifos increased rapidly. This implies that the value of �bt

is related to the nature of the pesticide. Apparently, the value of
�bt of methamidophos was much lower than that of chlorpyrifos
for a given PEF condition, namely, a steeper decline was seen in
the degradation rate curve of chlorpyrifos. Therefore, chlorpyrifos
degrades more easily than methamidophos during PEF treatment.
Similarly, the differences in values of k and n1/2 in the linear model
between methamidophos and chlorpyrifos were also observed in
Table 1. The k of chlorpyrifos were 3.8–4.9 fold higher than those
of methamidophos, suggesting that chlorpyrifos is much more la-
bile to PEF than methamidophos. The difference in degradation
kinetics between the two pesticides might due to their different
chemical structures. However, further identification of the degra-
dation products of pesticides is required to determine whether or
not the degradation of pesticides by PEF treatment is similar to
the known pathway.

4. Conclusions

PEF treatment is effective for the degradation of methamido-
phos and chlorpyrifos residues in apple juice, with chlorpyrifos is
shown to be much more labile to PEF than methamidophos. The
applied field strength and pulse number have significant influence
on the degradation behavior of these pesticides. The kinetics equa-
tion and related parameters quantitatively characterized the deg-
radation of pesticide. Only at low electric field strengths did the
linear model fit the experimental data, while the exponential mod-
el was more suitable for the describing degradation kinetics in all
treatments.
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